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BACKGROUND: Air pollution has been related to brain structural alterations, but a relationship with white matter microstructure is unclear.

OBJECTIVES:We assessed whether pregnancy and childhood exposures to air pollution are related to white matter microstructure in preadolescents.
METHODS:We used data of 2,954 children from the Generation R Study, a population-based birth cohort from Rotterdam, Netherlands (2002–2006).
Concentrations of 17 air pollutants including nitrogen oxides (NOX), particulate matter (PM), and components of PM were estimated at participants’
homes during pregnancy and childhood using land-use regression models. Diffusion tensor images were obtained at child’s 9–12 years of age, and
fractional anisotropy (FA) and mean diffusivity (MD) were computed. We performed linear regressions adjusting for socioeconomic and lifestyle
characteristics. Single-pollutant analyses were followed by multipollutant analyses using the Deletion/Substitution/Addition (DSA) algorithm.
RESULTS: In the single-pollutant analyses, higher concentrations of several air pollutants during pregnancy or childhood were associated with signifi-
cantly lower FA or higher MD (p<0:05). In multipollutant models of pregnancy exposures selected by DSA, higher concentration of fine particles
was associated with significantly lower FA [−0:71 (95% CI: −1:26, −0:16) per 5 lg=m3

fine particles] and higher concentration of elemental silicon
with significantly higher MD [0.06 (95% CI: 0.01, 0.11) per 100 ng=m3 silicon]. Multipollutant models of childhood exposures selected by DSA indi-
cated significant associations of NOX with FA [−0:14 (95% CI: −0:23, −0:04) per 20-lg=m3 NOX increase], and of elemental zinc and the oxidative
potential of PM with MD [0.03 (95% CI: 0.01, 0.04) per 10-ng=m3 zinc increase and 0.07 (95% CI: 0.00, 0.44) per 1-nmolDTT=min=m3 oxidative
potential increase]. Mutually adjusted models of significant exposures during pregnancy and childhood indicated significant associations of silicon
during pregnancy, and zinc during childhood, with MD.

DISCUSSION: Exposure in pregnancy and childhood to air pollutants from tailpipe and non-tailpipe emissions were associated with lower FA and
higher MD in white matter of preadolescents. https://doi.org/10.1289/EHP4709

Introduction
The evidence for the harmful effects of air pollution on human
health is increasing (Beelen et al. 2014; Chen et al. 2017;
Kaufman et al. 2016; Pedersen et al. 2013; Raaschou-Nielsen
et al. 2013). Animal studies focusing on the association between
exposure to air pollution and brain health are leading to growing
documentation of a relationship with neuroinflammation and oxi-
dative stress (Block et al. 2012). Due to the relatively immature

detoxification mechanisms of fetuses and infants as well as the
many developmental processes taking place during pregnancy
and childhood, direct and indirect exposures to air pollution dur-
ing these developmental periods could lead to alterations in the
brain even at relatively low levels of exposure (Block et al. 2012;
Grandjean and Landrigan 2014).

To date, most epidemiological studies have used neuropsycho-
logical instruments to assess the relationship between exposure to
air pollution and child’s neurodevelopment, demonstrating relation-
ships between higher exposures and lower cognitive performance,
impaired motor function, and more behavioral problems (Suades-
González et al. 2015). However, these studies provide limited
understanding of potential structural and functional brain alterations
that underlie these associations. The use of magnetic resonance
imaging (MRI) allows for the identification of such alterations, and
the limited number of existing studies using MRI have found evi-
dence for associations between exposure to air pollution during
pregnancy or childhood and white and gray matter abnormalities,
generally indicating a decrease in white and gray matter mass with
higher exposure to air pollution (Calderón-Garcidueñas et al. 2008,
2011; Guxens et al. 2018; Mortamais et al. 2017; Peterson et al.
2015; Pujol et al. 2016a, 2016b). To our knowledge, the use of diffu-
sion tensor imaging to quantify white matter microstructure in rela-
tion to air pollution exposures has been limited to a single study that
showed that airborne elemental copper was associated with

Address correspondence to Mònica Guxens, Barcelona Institute for Global
Health–Campus Mar, Doctor Aiguader 88, 08003 Barcelona. Telephone: 34
932 147 330. Email: monica.guxens@isglobal.org
Supplemental Material is available online (https://doi.org/10.1289/EHP4709).
*Current address: National Institute of Public Health and the Environment

(RIVM), Bilthoven, Netherlands.
The authors declare they have no actual or potential competing financial

interests.
Received 7 November 2018; Revised 7 January 2020; Accepted 17 January

2020; Published 13 February 2020.
Note to readers with disabilities: EHP strives to ensure that all journal

content is accessible to all readers. However, some figures and Supplemental
Material published in EHP articles may not conform to 508 standards due to
the complexity of the information being presented. If you need assistance
accessing journal content, please contact ehponline@niehs.nih.gov. Our staff
will work with you to assess and meet your accessibility needs within 3
working days.

Environmental Health Perspectives 027005-1 128(2) February 2020

A Section 508–conformant HTML version of this article
is available at https://doi.org/10.1289/EHP4709.Research

https://doi.org/10.1289/EHP4709
mailto:monica.guxens@isglobal.org
https://doi.org/10.1289/EHP4709
http://ehp.niehs.nih.gov/accessibility/
mailto:ehponline@niehs.nih.gov
https://doi.org/10.1289/EHP4709


differences in white matter microstructure adjacent to the caudate
nucleus (Pujol et al. 2016b). Unlike anatomical imaging, which is
used tomeasure the white and gray matter structure of the brain, dif-
fusion tensor imagingmeasures themagnitude and the directionality
of water diffusion within the white matter. These microstructural
properties measured by diffusion tensor imaging allow detection of
subtle alterations in white matter that may not be observable with
conventional anatomical imaging andwhichmay reveal characteris-
tics typifying healthy brain development (Schmithorst and Yuan
2010) as well as characteristics that could be indicative of various
psychiatric disorders (White et al. 2008). The diffusion profile of
white matter can be expressed with the use of two common scalar
values: fractional anisotropy (FA),which indicates the overall direc-
tionality of water diffusion, and mean diffusivity (MD), which
describes the magnitude of water diffusion within brain tissue. One
of the most important processes for optimal brain development is
myelination, which is essential for efficient functioning of the brain
through quick and healthy neural communication (van Tilborg et al.
2018). Myelination starts, on average, 28 weeks after conception
and continues throughout adolescence and is responsible for
increases in relative white matter volume and for water diffusion
changes within white matter tracts (van Tilborg et al. 2018), which
can be examined using diffusion tensor imaging. Moreover, diffu-
sion tensor images reveal information about the density of axonal
fiber packing in the brain, anothermeasure that is indicative ofwhite
matter integrity (Dimond et al. 2019).

Existing studies on the relationship between exposure to air pol-
lution and neurodevelopment assessed using MRI have analyzed a
relatively narrow number of air pollutants, thereby limiting the op-
portunity to disentangle which pollutants are most harmful. This
becomes relevant when different pollutants reflect different sources
of exposure, such as tailpipe emissions, brake linings, or tire wear
markers. In addition, to our knowledge, the existing studies have
focused on exposure during either pregnancy or childhood, but not
both. Given that myelination is a process that occurs across both
these developmental periods (van Tilborg et al. 2018), understand-
ing whether the timing of exposure to air pollution has a distinct and
negative impact on neurodevelopment is crucial. Moreover, regard-
ing exposure assessment during childhood, the existing studies that
analyzed the relationship between childhood exposures and neuro-
development assessed using MRI looked at either exposures meas-
ured using urinary metabolites or exposures measured at schools,
which likely reflect different sources of pollution and/or different ex-
posure conditions. Therefore, we aimed to analyze the associations
between pregnancy and childhood residential exposures to a wide
range of air pollutants with white matter microstructure in preado-
lescents. Our hypothesis was that higher exposure to air pollution is
associated with lower FA and higher MD of white matter, generally
associatedwith impaired neurodevelopment.

Methods

Population and Study Design
This study is embedded in the Generation R Study, a study of a
population-based birth cohort from pregnancy onward, based in
the urban area of Rotterdam, Netherlands (Kooijman et al. 2016).
A total of 8,879 women were enrolled during pregnancy and an
additional 899 women were recruited shortly after delivery. The
children were born between April 2002 and January 2006, and
we included only singleton pregnancies in our study, resulting in
9,610 children. When the children were between 9 and 12 years
of age, those still involved in the study were invited to participate
in an MRI session (n=8,548) (White et al. 2018). In total, 3,992
mothers and their children complied with the invite and con-
sented in writing (White et al. 2018). From this total, 2,954

children had good quality imaging scans and data on air pollu-
tion and were included in this analysis. The Medical Ethics
Committee of the Erasmus Medical Centre in Rotterdam,
Netherlands, granted ethical approval for the study.

Exposure to Air Pollution
Air pollution concentrations were estimated for all reported home
addresses of each participant during the pregnancy and childhood
following a standardized procedure (Guxens et al. 2018; de Hoogh
et al. 2013; Jedynska et al. 2014; Montagne et al. 2015; Yang et al.
2015). In brief, within the European Study of Cohorts for Air
Pollution Effects (ESCAPE) and Transport related Air Pollution
and Health impacts–Integrated Methodologies for Assessing
ParticulateMatter (TRANSPHORM) projects, three 2-weekmeas-
urements of nitrogen dioxide (NO2) and nitrogen oxides (NOX)
were performed in the warm, cold, and intermediate seasons
between February 2009 and February 2010 at 80 sites spread across
the Netherlands and Belgium (Montagne et al. 2015). In addition,
at 40 of those sites particulatematter (PM)with aerodynamic diam-
eter <10 lm (PM10), between 10 lm and 2:5 lm (PMcoarse),
<2:5 lm (PM2:5), absorbance of PM2:5 fraction (PM2:5 absorb-
ance), and composition of PM2:5 consisting of polycyclic aromatic
hydrocarbons (PAHs), benzo[a]pyrene (B[a]P), organic carbon
(OC), copper (Cu), iron (Fe), potassium (K), silicon (Si), zinc (Zn),
and the oxidative potential of PM2:5 (OP) measurements were car-
ried out (de Hoogh et al. 2013; Jedynska et al. 2014; Yang et al.
2015). The OP was evaluated using two acellular methods: dithio-
threitol (OPDTT) and electron spin resonance (OPESR) (Yang et al.
2015). Another campaign within the MUSiC (Measurements of
Ultrafine particles and Soot in Cities) project measuring PM with
aerodynamic diameter <0:1 lm [ultrafine particles (UFPs)] was
held in 2013 at 80 sites in Rotterdam (Montagne et al. 2015). The
number concentrations of UFPs were measured in real time for 30
min at each site in three different seasons. For each pollutant, the
results of the measurements were averaged, adjusting for temporal
trends using data from a continuous reference site, resulting in one
annualmean concentration for each pollutant.

A variety of potential land use predictors, such as proximity to
the nearest road, traffic intensity on the nearest road, and popula-
tion density, was then assigned to each monitoring site, and linear
regression modeling was applied to determine which combination
of predictors explained the concentrations of the pollutants most
accurately, resulting in land-use regression (LUR) models (de
Hoogh et al. 2013; Jedynska et al. 2014; Montagne et al. 2015;
Yang et al. 2015). In this study, we focused only on pollutants
whose LUR models included at least one traffic predictor. Next,
these LUR models were applied to each address that the partici-
pants had lived at during the period of interest, that is, since con-
ception until the MRI session. Taking into account the time spent
at each address and weighting the pollution concentrations accord-
ingly, we then obtained a single mean air pollution concentration
of each pollutant for each participant for the pregnancy period (i.e.,
since conception until birth) and for the childhood period (i.e.,
since birth until the MRI session). From the 899 participants who
were recruited shortly after birth, 310 were included in this analy-
sis, and we considered their address at birth as representative for
the pregnancy period. Because no historical data was available for
the majority of the pollutants under study to perform back- and for-
ward extrapolation of the concentrations to match the exact periods
of interest, we assumed that the spatial contrast remained constant
over time as has been previously demonstrated in the Netherlands
for a period of up to 8 y (1999–2007) (Eeftens et al. 2011) and in
Great Britain for a period of up to 18 y (1991–2009) (Gulliver et al.
2013).
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Diffusion Tensor Imaging
Image acquisition. To familiarize participants with the magnetic
resonance environment and therefore reduce the possibility of fail-
ure to complete the scanning session, each child underwent a half-
hour mock scanning session prior to the actual MRI (White et al.
2018). To limit the movement of the head, the participating children
were accommodated by providing themwith a thorough explanation
before the scanning session, the possibility to watch a movie or lis-
ten to music during the session, and by placement of cushions
around the head to fixate the head in a comfortable way. The scans
were performed on a 3 Tesla General Electric scanner (MR750W;
GE) using an 8-channel receive-only head coil. Diffusion tensor
imaging data were obtained using an axial spin echo with 35-
direction echo planar imaging sequence [repetition time ðTRÞ=
12:500ms, echo time ðTEÞ=72ms, field of view=240 mm×
240 mm, acquisitionmatrix = 120× 120, slice thickness= 2 mm,
number of slices = 65, asset acceleration factor = 2, b= 900 s=mm2].

Image preprocessing. The image preprocessing was per-
formedwith the use of the FMRIBSoftware Library (FSL), version
5.0.9 (Jenkinson et al. 2012). First, the images were modified to
exclude nonbrain tissue and then rectified for artifacts induced by
eddy currents and for translations or rotations that potentially arose
due to minor movement of the head during the scanning session.
The B-table was then rotated based on the rotations calculated and
applied to the diffusion data during the eddy–current correction
step. Next, using the RESTORE approach from the Camino diffu-
sion MRI toolkit (Cook et al. 2006), a diffusion tensor was fitted at
each voxel, followed by the computation of FA andMD.

Probabilistic tractography. To establish connectivity distribu-
tions for several large fiber bundles, the automated FSL plugin
AutoPtx (de Groot et al. 2015) was used to perform probabilistic
white matter fiber tractography on the scans of each participant.
This package includes a set of predefined seed, target, and exclusion
masks for a number of large white matter tracts. After a nonlinear
registration of the FA map of each participant to the FMRIB58 FA
map, these predefined seed, target, and exclusionmasks were warped
back to each participant’s native space. The FSLBayesian Estimation
of Diffusion Parameters Obtained Using Sampling Techniques
(BEDPOSTx) along with the FSL ProbtrackX were used, taking into
account twofiber orientations, to conduct probabilisticfiber tractogra-
phy (Behrens et al. 2003, 2007). The amount of successful seed-to-
target attempts from the identified connectivity distributions were
used to normalize the connectivity distributions, followed by intro-
duction of a threshold to eliminate voxels that were implausible to
belong to the true distribution. Byweighting voxels based on the con-
nectivity distribution, with voxels with higher probability of being
part of the true distribution receiving higher weight, average FA and
MDvalueswere assessed for eachwhitematter tract.

DTI quality assurance. For automatic assessment of slice-wise
variation and properties of artifacts in each diffusion-weighted vol-
ume, the DTIPrep tool (https://www.nitrc.org/projects/dtiprep/)
was used. Next, maps of sum-of-squares error (SSE) from the calcu-
lations of diffusion tensor were studied for signals characteristic of
artifacts. Each SSEmapwas classified by a value from 0 to 3, with 0
indicating no artifacts, 1 indicating mild artifacts, 2 indicating mod-
erate artifacts, and 3 indicating severe artifacts. If the automated
quality control or the SSE map inspection was poor, indicating a
substantial presence of artifacts, these cases were excluded from
analyses. Thiswas denoted by a structured-pattern high signal inten-
sity in the SSE map on one or more slices, not including, for exam-
ple, the ventricles or nonbrain tissue. Examples include substantial
ghosting artifacts, entire slices with high signal intensity (indicative
of substantial motion). Ratings of 1 or 2 (mild and moderate arti-
facts, respectively) was rated when data contained no more than
three slices with mildly increased structured signal (i.e., not high/

strong, not in ventricles/nonbrain areas) in the SSE map. SSE maps
were rated independently of the automated DTIPrep results (and
vice versa), and thus data could be excluded due to failing any of the
checks done (i.e., some data sets were excluded for only SSE issues,
only DTIPrep issues, only registration issues, or some combination
of issues). Finally, an examination of accuracy with respect to the
nonlinear registration of the scans to standard space was performed
to ensure seed and target masks for tractography were properly
aligned to native space. Nonlinear registration was checked by
building a four-dimensional nifti file containing all subjects’ co-
registered FA maps, such that the fourth dimension was subject.
Images were visually inspected one at a time for major deviations
from the template, either in rotations, translations, or over-warping
in certain areas (more than ∼ 2 voxels of shift from the template).
Proper whole-brain coverage was also inspected during this step,
and some subjects missing substantial portions of the brain (leading
to over-warping of the nonlinear registration) were also flagged.

Construction of global DTI metrics. In order to estimate a
global estimate of FA and MD, which may better capture associa-
tions that have relatively small effect sizes that spatially are wide-
spread in the brain, we ran a confirmatory factor analysis on scalar
metrics from 12 commonly defined white matter tracts: cingulum
bundle, corticospinal tract, inferior longitudinal fasciculus, supe-
rior longitudinal fasciculus, uncinate fasciculus (one per hemi-
sphere), forceps minor and forceps major (interhemispheric). The
confirmatory factor analysis essentially generates a weighted aver-
age of all 12 tracts based on the factor loadings. For FA andMD, a
separate (although identically structured) factor analysis was run to
produce a factor score (a global metric of FA and MD) (Muetzel
et al. 2018). Global metrics are factors scores from a confirmatory
factor analysis (i.e., standardized scores centered on 0 and ranging
from roughly −5 to 5 for FA, and −0:5 to 0.5 for MD) and thus do
not conform to the standard values typically seen with DTI (e.g.,
FA ranging from 0 to 1). All FA values from specific tracts are pre-
sented on the proper scale (e.g., for FA from 0 to 1). For the MD
values from specific tracts, a scaling factor of 109 was used. FA
indicates the tendency for preferential water diffusion inwhitemat-
ter tracts, which is lower in white matter with certain features (e.g.,
white matter tracts in which the comprising axons are less densely
packed and the directionality of thewater diffusion is not uniformly
directed as compared with well-organized tracts). MD describes
the magnitude of average water diffusion in all directions within
brain tissue, with higher values generally occurring in white matter
tracts that show a less well-organized structure.

Potential Confounding Variables
Potential confounding variables included in the models were
selected based on scientific literature and on availability of data
within the Generation R cohort (Guxens et al. 2018). Maternal
and paternal educational level (primary education or lower/sec-
ondary education/higher education), monthly household income
(<900e=900e–1,600e=1,600e–2,200e=>2,200e), maternal and
paternal country of birth (the Netherlands/other Western/non-
Western), maternal and paternal age at enrollment in the cohort
(continuous in years), maternal smoking during pregnancy (never/
smoking use until pregnancy known/continued smoking during
pregnancy), maternal alcohol consumption during pregnancy
(never/alcohol use until pregnancy known/continued alcohol use
during pregnancy), parity (nulliparous/one child/two or more chil-
dren), marital status (married/living together/no partner), and
maternal and paternal psychological distress (continuous) using
the Brief Symptom Inventory (De Beurs 2004) were collected by
questionnaires during pregnancy. Maternal and paternal weight
and height (continuous in kilograms and centimeters, respectively)
were measured or self-reported in the first trimester of pregnancy,
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and maternal and paternal body mass index (BMI) was calculated
based on the collected weight and height data. Maternal and pater-
nal height were included in the models as potential confounding
variables separately from BMI because they could be associated
with the outcome variables independent fromBMI.Maternal intel-
ligence quotient (continuous) was assessed at child’s age of 6 y
with Ravens Advanced Progressive Matrices Test, set I (Raven
1962). Using multidimensional scaling, child’s genetic ancestry
was estimated based on the genome-wide single-nucleotide poly-
morphism data from whole blood at birth, and four principal com-
ponents of ancestry (continuous) were included here to better
correct for population stratification (Neumann et al. 2017; Price
et al. 2006). Child’s sex (boy/girl) was obtained from hospital
records at birth and child’s age (continuous in years) was collected
at the scanning session.

Statistical Analyses
We first appliedmultiple imputation ofmissing values using chained
equations to impute missing potential confounding variables among
all participants with available data on the exposure and the outcome.
We obtained 25 completed data sets, whichwe analyzed using stand-
ard procedures for multiple imputation (see Table S1). Children
included in the analysis (n=2,954) were more likely to have parents
from a higher socioeconomic position compared with children who
were not included (n=6,656) (Table 1). To correct for selection bias
that potentially arises when a population with only available expo-
sure and outcome data is included as compared with a full initial
cohort recruited at pregnancy, we used inverse probability weighting
(Weisskopf et al. 2015;Weuve et al. 2012). In brief, wefirst imputed
missing covariates for all eligible subjects (n=9,610), and we then
used all the available information to predict the probability of partici-
pation in the present study and used the inverse of those probabilities
as weights in the analyses, which were then applied to the imputed
data sets obtained in the previous step, so that results would be repre-
sentative for the initial populations of the cohorts. The variables used
to create the weights, as well as the distribution of the obtained
weights, can be found in Figure S2.

After visual inspection of the distributions, we used linear
regression models to analyze the relationships between concentra-
tions of air pollutants first during pregnancy and then during child-
hood, with white matter microstructure metrics. We first performed
single-pollutant analyses wherein each pollutant was studied sepa-
rately. Next, we ran multipollutant analyses using the Deletion/
Substitution/Addition (DSA) algorithm, which has shown relatively
good performance with reference to a compromise between sensi-
tivity and false discovery proportion compared with other similar
methods (Agier et al. 2016). Briefly, the DSA algorithm is an itera-
tive selection method that selects the variables that are most predic-
tive of the outcome by cross-validation, taking into account the
correlation matrix of the variables and simultaneously correcting for
multiple testing. This algorithm allows three steps at each performed
iteration, namely, a) deletion: removal of a variable; b) substitution:
replacement of one variable with another one; and c) addition: inser-
tion of a variable to the pending model. The exploration for the opti-
mal model, with optimal model representing a combination of
variables with the smallest value of root-mean-square deviation,
begins with the interceptmodel and continues with the deletion, sub-
stitution, and addition process to identify the optimal combination of
variables. To assure the adjustment for all potential confounding var-
iables in each model, we fixed the potential confounders, allowing
only the air pollution exposures to participate in the selection pro-
cess. When two or more pollutants showed a correlation of 0.90 or
more, we included only the pollutant that the LUR model showed
had a better performance based on the R2 of the model (see Table
S2). Because the DSA algorithm is based on a cross-validation

process that is subject to random variations, we ran each model 200
times, selecting the final model based on frequency of occurrence (at
least 10%). We performed two separate analyses using the DSA
algorithm: one including only air pollution exposures in pregnancy;
and the second one including only the childhood air pollution expo-
sures. In addition, for each global outcome, we performed a linear
regression model that included all pregnancy and childhood expo-
sures that were significant predictors of the outcome in a single-
pollutant model and significant predictors of the outcome in a DSA-
selected multipollutant model of pregnancy exposures or childhood
exposures. In addition, the pollutants that were nominally significant
in the multipollutant models of global FA or MD, as well as nomi-
nally significant in the single-pollutantmodels,were analyzed in sep-
arate single-pollutant models of FA and MD in 12 individual white
matter tracts (Figure 1). Finally, if more than one pollutant remained
significant for FA or MD in the same tract after application of false
discovery rate (FDR) correction (Benjamini and Hochberg 1995),
we performedmultipollutantmodels for FA orMD in the tract.

Because we considered the address at birth as representative
for the pregnancy period for those participants who were recruited
shortly after birth and because their mothers were of slightly
higher mean age {33.2 y [standard deviation ðSDÞ=4:8] vs. 30.9 y
(SD=4:8)}, and from a higher socioeconomic position as com-
pared with mothers recruited during pregnancy (e.g., highest cate-
gory education 57% vs. 53%; highest category household income:
76% vs. 64%), we repeated the pregnancy analyses excluding the
children from mothers recruited shortly after birth, to test the sensi-
tivity of the results. The pollutants analyzed were the same as those
selected by the DSA algorithm in the analyses that included the
full study population.

Finally, to quantify the measurement error in the air pollution
assessment (LUR model predictions) and to transfer the resulting
uncertainty to the exposure–outcome associations, we used a boot-
strap method (Szpiro et al. 2011). Briefly, this method performs
iteratively the following steps: a) simulates a new health outcome
variable and the exposure at the monitoring locations based on the
fitted models and residual errors; b) builds a new LUR model that
predicts the simulated exposure; c) uses the newLURmodel to pre-
dict exposure for the whole cohort; and d) estimates the exposure–
outcome association with the newly generated health outcome
variable and predicted exposure. The variance in the estimates
resulting from the different iterations was used as the measurement
error corrected variance. This variance or, equivalently, the confi-
dence intervals (CIs) were compared with the variance obtained
when measurement error was not taken into account. Given that
the measurement error is expected to be mostly of Berkson type,
bias in exposure–outcome coefficient estimates was not expected
andwas therefore not corrected (Szpiro et al. 2011).

All models were carried out with all imputed data sets (except for
the DSA selection process and the measurement error calculations,
which were carried out with the 25th imputed data set), were cor-
rected for a potential selection bias using inverse probability weight-
ing, and were adjusted for potential confounding variables described
in the section above. We present beta coefficients and their 95% CIs
per 20 lg=m3 for NOX; 10lg=m3 for NO2; 10lg=m3 for PM10;
5 lg=m3 for PMcoarse; 5lg=m3 for PM2:5; 10−5=m for PM2:5 absorb-
ance; 1 ng=m3 for PAHs; 0:1 ng=m3 for B[a]P; 1lg=m3 for OC;
5 ng=m3 for Cu in PM2:5; 100 ng=m3 for Fe in PM2:5; 50 ng=m3 for
K in PM2:5; 100 ng=m3 for Si in PM2:5; 10 ng=m3 for Zn in PM2:5;
1 nmolDTT=min=m3 for OPDTT; 1,000 arbitrary units=m3 for
OPESR; and 10,000 particles=cm3 for UFP, based on the distribution
of each exposure variable. Statistical tests of hypotheses were two-
tailed with significance set at p<0:05. Statistical analyses were car-
ried out using STATA (version 14.0; StataCorporation) and R (ver-
sion 3.4.2; RDevelopment Core Team).
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Table 1. Participant characteristics and comparison between included and non-included subjects in the study among the 9,610 eligible subjects.

Participant characteristics

Distribution

Included (n=2,954) Not included (n=6,656) p-Value

Maternal education level <0:001
Primary education or lower 176 (6.5%) 775 (13.6%)
Secondary education 1,092 (40.1%) 2,784 (48.8%)
Higher education 1,453 (53.4%) 2,148 (37.6%)
Missing 233 949
Paternal education level <0:001
Primary education or lower 92 (4.9%) 335 (10.2%)
Secondary education 700 (37.6%) 1,420 (43.1%)
Higher education 1,069 (57.4%) 1,542 (46.8%)
Missing 1,093 3,359
Monthly household income at intake <0:001
<900e 172 (7.5%) 658 (15.2%)
900e–1,600e 319 (13.8%) 891 (20.6%)
1,600e–2,200e 329 (14.3%) 663 (15.3%)
>2,200e 1,486 (64.4%) 2,110 (48.8%)
Missing 648 2,334
Maternal country of birth <0:001
Netherlands 1,702 (58.7%) 2,766 (45.8%)
Other Western 252 (8.7%) 516 (8.5%)
Non-Western 944 (32.6%) 2,761 (45.7%)
Missing 56 613
Paternal country of birth <0:001
Netherlands 1,419 (69.5%) 2,207 (57.2%)
Other Western 120 (5.9%) 283 (7.3%)
Non-Western 502 (24.6%) 1,368 (35.5%)
Missing 913 2,798
Family status at intake <0:001
Married 1,394 (51.5%) 2,808 (49.1%)
Living together 1,023 (37.8%) 1,989 (34.7%)
No partner 292 (10.8%) 928 (16.2%)
Missing 245 931
Maternal parity (nulli- vs. multiparous) 1,630 (57.2%) 3,473 (54.3%) <0:001
Missing 103 259
Maternal smoking during pregnancy <0:001
Never 2,004 (78.2%) 3,956 (71.3%)
Smoking until pregnancy known 222 (8.7%) 470 (8.5%)
Continued smoking during pregnancy 338 (13.2%) 1,123 (20.2%)
Missing 390 1,107
Maternal alcohol use during pregnancy <0:001
Never 973 (41.7%) 2,773 (53.4%)
Alcohol use until pregnancy known 335 (14.4%) 691 (13.3%)
Continued alcohol use during pregnancy 1,023 (43.9%) 1,728 (33.3%)
Missing 623 1,464
Maternal age at intake (y) 31.2 (4.8) 29.3 (5.5) <0:001
Missing 0 2
Paternal age at intake (y) 33.5 (5.3) 32.3 (5.9) <0:001
Missing 877 2,477
Maternal prepregnancy BMI (kg=m2) 23.4 (4.0) 23.8 (4.5) 0.003
Missing 773 1,815
Paternal BMI (kg=m2) 25.2 (3.3) 25.4 (3.6) 0.141
Missing 884 2,485
Maternal height (cm) 168.1 (7.4) 166.7 (7.4) <0:001
Missing 316 591
Paternal height (cm) 182.6 (7.7) 181.1 (8.0) <0:001
Missing 880 2,475
Maternal psychological distress during pregnancy 0.3 (0.3) 0.3 (0.4) <0:001
Missing 717 2,333
Paternal psychological distress during pregnancy 0.1 (0.2) 0.2 (0.3) <0:001
Missing 1,169 3,539
Maternal IQ score 97.9 (14.7) 94.0 (15.7) <0:001
Missing 266 3,077
Child’s sex (boy vs. girl) 1,472 (49.8%) 3,339 (50.2) 0.298
Missing 0 107
Child’s genetic ancestrya
Principal component 1 7.4 (40.5) −4:0 (48.1) <0:001
Principal component 2 1.3 (20.9) −0:7 (23.8) 0.002
Principal component 3 −2:6 (13.4) 1.4 (17.1) <0:001
Principal component 4 −0:4 (10.4) 0.2 (12.6) 0.045
Missing 1,073 2,851
Child’s age at scanning session (y) 10.1 (0.6) 10.1 (0.6) <0:001
Missing 0 5,722

Note: Values are counts (percentages) for the categorical variables and mean (standard deviation) for the continuous variables. v2 test was used for categorical variables and Student’s
t-test for continuous variables. BMI, body mass index; IQ, intelligence quotient.
aValues are multiplied by 1,000.
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Results
Participant characteristics are shown in Table 1. The percentage of
missing values was below 30% except for paternal country of birth,
paternal education level, paternal psychological distress, and child
genetics ancestry, which had 31%, 37%, 40%, and 36% of missing
values respectively. Based on observations with known values,
mothers of the included participants (n=2,954) were more likely
to have higher education, higher household income, be Dutch, and
have a partner, as compared with mothers of participants that were
not included (n=6,656). Mean air pollution exposure concentra-
tions during pregnancy were 35:1 lg=m3 for NO2 and 16:5 lg=m3

for PM2:5, and during childhood, 32:8lg=m3 for NO2 and
16:4 lg=m3 for PM2:5 (Table 2). Correlations between the expo-
sures in the two periods of interest were generallymoderate, ranging
between 0.40 for NO2 and 0.63 for OC (Table 2). Mothers with a
higher level of education and a higher monthly household income
andwhowere nulliparouswere exposed to higher averageNO2 con-
centrations during pregnancy. These associations were, however,

not consistent between the different pollutants (see Tables S3–S11).
Correlations between the concentrations of pollutants also varied
considerably depending on the pollutant (see Figures S2 and S3).
Based on the correlations, we excluded PM10, B[a]P, K, and UFP
from the multipollutant analysis because they showed correlations
higher than 0.90 with PM2:5 absorbance, PAHs, Zn, and Cu, respec-
tively, but had a poorer performing LUR model [with exception of
B[a]P, which had a better performing LUR model than PAHs (see
Table S2) but was excluded because the PAH category comprises
various polycyclic aromatic hydrocarbons, including B[a]P, and was
therefore consideredmore comprehensive].

In the single-pollutant analysis, higher concentrations of NOX,
PM10, PM2:5, and PM2:5 absorbance during pregnancy were signif-
icantly associated with lower global FA (Table 3). Higher concen-
trations of NOX, NO2, PM10, PM2:5, PM2:5 absorbance, Cu, Fe, Si,
OPESR, and UFP during pregnancy showed significant associations
with higher global MD (Table 4). In the multipollutant analysis,
PM2:5 exposure during pregnancy remained significantly associated

Table 2. Air pollution exposure levels during pregnancy and during childhood, and Pearson’s correlations between the exposures at the two time periods.

Pollutant

Pregnancy Childhood

CorrelationMean p25 p50 p75 Mean p25 p50 p75

NOX 51.1 40.9 46.6 58.2 47.0 38.4 43.1 52.1 0.55
NO2 34.7 31.9 34.2 36.7 32.6 29.4 32.5 35.1 0.47
PM10 27.1 26.0 26.7 28.0 26.6 25.7 26.3 27.2 0.52
PMcoarse 9.9 9.2 10.1 10.6 9.5 8.6 9.5 10.3 0.56
PM2:5 17.0 16.6 16.8 17.2 16.8 16.5 16.7 17.1 0.61
PM2:5 abs 1.7 1.5 1.6 1.8 1.6 1.4 1.5 1.7 0.53
PAHs 1.0 0.8 0.9 1.1 1.0 0.8 0.9 1.1 0.66
B[a]P 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.67
OC 1.7 1.5 1.8 2.0 1.6 1.4 1.7 1.9 0.60
Cu 4.9 4.5 4.6 5.0 4.6 4.2 4.5 4.8 0.53
Fe 123.4 114.1 119.8 129.1 116.8 106.6 116.5 124.4 0.52
K 113.0 108.5 110.5 114.8 112.1 108.1 110.2 113.4 0.61
Si 93.0 87.9 88.8 90.5 91.6 87.6 88.6 90.4 0.60
Zn 20.2 17.6 18.8 21.3 20.0 17.4 18.7 20.8 0.55
OPDTT 1.3 1.3 1.3 1.4 1.3 1.2 1.3 1.4 0.59
OPESR 1,079.4 1,000.7 1,036.6 1,100.1 1,037.9 964.7 1,014.7 1,072.2 0.57
UFP 10,330.3 9,509.9 10,058.5 10,926.3 9,547.1 8,446.0 9,644.8 10,385.0 0.49

Note: B[a]P, benzo[a]pyrene in ng=m3; Cu, copper in ng=m3; Fe, iron in ng=m3; K, potassium in ng=m3; NO2, nitrogen dioxide in lg=m3; NOX, nitrogen oxides in lg=m3; OC, or-
ganic carbon in ng=m3; OP, oxidative potential (evaluated using two acellular methods: OPDTT, dithiothreitol in nmol DTT=min=m3, and OPESR, electron spin resonance in arbitrary
units=m3); PAHs, polycyclic aromatic hydrocarbons in ng=m3; PM, particulate matter with different aerodynamic diameters: <10 lm (PM10) in lg=m3; between 10 lm and 2:5 lm
(PMcoarse) in lg=m3; <2:5 lm (PM2:5) in lg=m3; PM2:5 abs, absorbance of PM2:5 filters in 10−5=m; Si, silicon in ng=m3; UFP, ultrafine particles in particles=cm3; Zn, zinc in ng=m3.

Figure 1. Group average representations of the tracts in standard coordinate space. Note: A, anterior; I, inferior; L, left; P, posterior; R, right; S, superior.
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with global FA [0.71 lower global FA (95% CI: −1:26, −0:16) per
5-lg=m3 increase of PM2:5] (Table 5). PM2:5 and PAH exposures
during pregnancy were both significant predictors of global FA
when included in the same model, showing inverse and positive
associations, respectively. Exposure in pregnancy to Si remained
significantly associated with global MD in the multipollutant analy-
sis [0.06 higher global MD (95% CI: 0.01, 0.11) per 100-ng=m3

increase of Si]. Exclusion of children with mothers recruited shortly
after the pregnancy (n=310) did not lead to notable changes in the
effect estimates (see Table S12).

Regarding air pollution exposure during childhood, higher
concentrations of NOX, NO2, PM2:5 absorbance, OC, and K were
significantly associated with lower global FA (Table 3). Higher
concentrations of NOX, NO2, PM10, PMcoarse, PM2:5, PM2:5

absorbance, K, Si, Zn, and OPDTT showed significant associations
with higher globalMD (Table 4). In themultipollutant analysis, child-
hood exposure to NOX remained significantly associated with global
FA [0.14 lower global FA (95% CI: −0:23, −0:04) per 20-lg=m3

increase of NOX], whereas Zn and OPDTT remained significantly
associated with global MD [0.03 higher global MD (95% CI: 0.01,
0.04) per 10-ng=m3 increase in Zn, and 0.07 higher MD (95% CI:
0.00, 0.44) per 1-nmolDTT=min=m3 increase inOPDTT] (Table 5).

When pregnancy PM2:5 and childhood NOX exposures that
were nominally significant in the multipollutant models, and nomi-
nally significant in the single-pollutant models, were analyzed
simultaneously, they no longer showed statistically significant asso-
ciations with global FA (see Table S13), and the beta coefficients
approached zero. However, the associations between pregnancy

Table 4. Adjusted associations between exposure during pregnancy and childhood to single air pollutants and global mean diffusivity at 9–12 years of age.

Pollutant Contrast

Global mean diffusivity

Pregnancy Childhood

Coef. 95% CI p-Value Coef. 95% CI p-Value

NOX 20 lg=m3 0.01 0.00, 0.02 0.1 0.02 0.01, 0.03 0.005
NO2 10 lg=m3 0.02 0.00, 0.04 0.021 0.02 0.00, 0.03 0.011
PM10 10 lg=m3 0.05 0.00, 0.10 0.042 0.07 0.01, 0.12 0.027
PMcoarse 5 lg=m3 0.03 −0:01, 0.07 0.2 0.04 0.00, 0.09 0.038
PM2:5 5 lg=m3 0.09 0.02, 0.15 0.014 0.11 0.03, 0.20 0.010
PM2:5 abs 10−5=m 0.04 0.01, 0.06 0.012 0.04 0.01, 0.07 0.009
PAHs 1 ng=m3 0.01 −0:01, 0.04 0.3 0.01 −0:02, 0.04 0.5
B[a]P 0:1 ng=m3 0.02 −0:01, 0.04 0.1 0.01 −0:02, 0.04 0.3
OC 1 lg=m3 0.02 −0:01, 0.04 0.2 0.02 0.00, 0.04 0.1
Cu 5 ng=m3 0.05 0.01, 0.10 0.030 0.03 −0:02, 0.09 0.2
Fe 100 ng=m3 0.05 0.01, 0.09 0.018 0.03 −0:01, 0.07 0.1
K 50 ng=m3 0.04 −0:02, 0.09 0.2 0.09 0.03, 0.15 0.006
Si 100 ng=m3 0.07 0.02, 0.12 0.010 0.05 0.00, 0.11 0.047
Zn 10 ng=m3 0.01 −0:01, 0.03 0.2 0.03 0.01, 0.05 0.003
OPDTT 1 nmolDTT=min=m3 0.06 −0:01, 0.13 0.069 0.09 0.02, 0.16 0.016
OPESR 1,000 units=m3 0.04 0.00, 0.09 0.047 0.04 0.00, 0.09 0.1
UFP 10,000 particles=cm3 0.05 0.01, 0.10 0.023 0.03 −0:01, 0.08 0.1

Note: Coefficients and 95% CI from linear regression models adjusted for both maternal and paternal education, country of birth, age, height, BMI, and psychological distress during
pregnancy; maternal smoking and alcohol consumption during pregnancy, parity, marital status, intelligence quotient, and household income; and child’s genetic ancestry, gender, and
age at the scanning session. Any missing covariates were imputed through multiple imputation, and inverse probability weighting technique was used to account for potential selection
bias. B[a]P, benzo[a]pyrene; BMI, body mass index; CI, confidence intervals; coef., coefficient; NO2, nitrogen dioxide; NOX, nitrogen oxides; OC, organic carbon; OP, oxidative
potential (evaluated using two acellular methods: OPDTT, dithiothreitol and OPESR, electron spin resonance); PAHs, polycyclic aromatic hydrocarbons; PM, particulate matter with dif-
ferent aerodynamic diameters: PM10, <10 lm; PMcoarse, between 10 lm and 2:5 lm; PM2:5, PM2:5, <2:5 lm; PM2:5 abs, absorbance of PM2:5 filters; UFP, ultrafine particles.

Table 3. Adjusted associations between exposure during pregnancy and childhood to single air pollutants and global fractional anisotropy at 9–12 years of age.

Pollutant Contrast

Global fractional anisotropy

Pregnancy Childhood

Coef. 95% CI p-Value Coef. 95% CI p-Value

NOX 20lg=m3 −0:11 −0:20, −0:02 0.018 −0:14 −0:23, −0:04 0.007
NO2 10lg=m3 −0:11 −0:25, 0.03 0.1 −0:13 −0:25, −0:01 0.029
PM10 10lg=m3 −0:49 −0:90, −0:08 0.018 −0:45 −0:91, 0.01 0.1
PMcoarse 5 lg=m3 −0:05 −0:37, 0.27 0.8 −0:29 −0:63, 0.04 0.1
PM2:5 5 lg=m3 −0:71 −1:26, −0:16 0.012 −0:46 −1:14, 0.21 0.2
PM2:5 abs 10−5=m −0:29 −0:51, −0:07 0.012 −0:27 −0:51, −0:02 0.032
PAHs 1 ng=m3 0.01 −0:19, 0.21 1.0 0.15 −0:09, 0.38 0.2
B[a]P 0:1 ng=m3 −0:06 −0:24, 0.13 0.6 0.11 −0:14, 0.35 0.4
OC 1 lg=m3 −0:12 −0:29, 0.05 0.2 −0:20 −0:38, −0:03 0.024
Cu 5 ng=m3 −0:32 −0:71, 0.06 0.1 −0:22 −0:65, 0.21 0.3
Fe 100 ng=m3 −0:20 −0:54, 0.14 0.2 −0:22 −0:53, 0.09 0.2
K 50 ng=m3 −0:38 −0:84, 0.08 0.1 −0:53 −1:03, −0:03 0.039
Si 100 ng=m3 −0:28 −0:70, 0.15 0.2 −0:24 −0:66, 0.19 0.3
Zn 10 ng=m3 −0:12 −0:28, 0.04 0.1 −0:13 −0:27, 0.02 0.1
OPDTT 1 nmolDTT=min=m3 0.21 −0:34, 0.75 0.4 −0:14 −0:69, 0.42 0.6
OPESR 1,000 units=m3 −0:19 −0:55, 0.17 0.3 −0:21 −0:57, 0.16 0.3
UFP 10,000 particles=cm3 −0:26 −0:63, 0.11 0.2 −0:21 −0:56, 0.15 0.3

Note: Coefficients and 95% CI from linear regression models adjusted for both maternal and paternal education, country of birth, age, height, BMI, and psychological distress during
pregnancy; maternal smoking and alcohol consumption during pregnancy, parity, marital status, intelligence quotient, and household income; and child’s genetic ancestry, gender, and
age at the scanning session. Any missing covariates were imputed through multiple imputation, and inverse probability weighting technique was used to account for potential selection
bias. B[a]P, benzo[a]pyrene; CI, confidence intervals; coef., coefficient; NO2, nitrogen dioxide; NOX, nitrogen oxides; OC, organic carbon; OP, oxidative potential (evaluated using
two acellular methods: OPDTT, dithiothreitol and OPESR, electron spin resonance); PAHs, polycyclic aromatic hydrocarbons; PM, particulate matter with different aerodynamic diame-
ters: PM10), <10 lm; PMcoarse, between 10 lm and 2:5 lm; PM2:5, <2:5 lm; PM2:5 abs, absorbance of PM2:5 filters; UFP, ultrafine particles.
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exposure to Si and childhood exposure to Zn and global MD
remained significant after mutual adjustment, and the beta coeffi-
cients did not change notably.

Analyses of FA in the 12 specific white matter tracts did not
indicate FDR-significant associations with pregnancy PM2:5 or
childhood NOX in any tract (see Table S14). In analyses of MD in
specific white matter tracts, FDR-significant associations were
estimated for pregnancy Si and MD in the cingulate gyrus part of
the cingulum of the left hemisphere, the superior longitudinal fas-
ciculus of the left hemisphere, and the forceps minor. Associations
between childhood Zn and MD were FDR-significant for 6 tracts:
the uncinate fasciculus tract of the right hemisphere, the cingulate
gyrus part of the cingulum of both hemispheres, the superior longi-
tudinal fasciculus of both hemispheres, and the forceps minor (see
Table S15). None of the coefficients for childhood OPDTT and MD
in specific tracts were FDR-significant. When we simultaneously
modeled pregnancy Si and childhood Zn in association withMD in
the 3 tracts that were FDR-significant for both pollutants in single-
pollutant models, associations were nominally significant for both
exposures in all 3 tracts (see Table S16). Accounting for measure-
ment error only slightly increased the standard errors and did not
alter themain conclusions (see Table S17).

Discussion
We observed associations between exposure to air pollutants in
two critical periods of brain development, namely pregnancy and

childhood, and white matter microstructure in preadolescents 9–12
years of age. Our multipollutant analysis identified statistically sig-
nificant associations between exposure to PM2:5 and elemental Si
during pregnancy and exposure to NOX, elemental Zn, and OPDTT
during childhood and white matter microstructure, associations
that were also statistically significant in the single-pollutant model
analyses. When pregnancy PM2:5 and childhood NOX were
included in the same model, the associations with global FA were
no longer statistically significant. However, when pregnancy Si
and childhood Zn and OPDTT were included in the same model,
associations of pregnancy Si and childhood Zn with global MD
remained statistically significant. Higher exposures to pollutants
were predominantly related to lower FA and higher MD, generally
considered as indicators for atypical white matter microstructure
and previously associated with psychiatric and neurological disor-
ders (White et al. 2008, Aoki et al. 2017; van Ewijk et al. 2012).

Among pregnancy exposures that were significantly associated
with white matter microstructure in single-pollutant models and
were selected for multipollutant models by the DSA algorithm,
PM2:5 remained significantly associated with lower global FA.
Exposure to PM2:5 is a human health concern, with associated
health effects including those in neurological and neuropsycholog-
ical domains, among many others (Beelen et al. 2014; Block et al.
2012; Chen et al. 2017; Kaufman et al. 2016; Pedersen et al. 2013;
Raaschou-Nielsen et al. 2013). Although single-pollutant models
of global FA were not significant for pregnancy PAHs, the DSA
algorithm selected models that estimated significant associations

Table 5. Results of multipollutant models selected by the Deletion/Substitution/Addition algorithm for pregnancy and childhood exposures in relation to global
fractional anisotropy and global mean diffusivity, respectively.

Exposure models Contrast Coef. (95% CI) p-Value

Global fractional anisotropy
Pregnancy exposure models (% of runs)
Model 1 (24.5%)
PM2:5 5 lg=m3 −1:49 (−2:25, −0:73) <0:001
PAHs 1 ng=m3 0.33 (0.06, 0.59) 0.017
OPDTT 1 nmolDTT=min=m3 0.50 (−0:07, 1.07) 0.1
Model 2 (20%)
PM2:5 5 lg=m3 −1:32 (−2:06, −0:58) <0:001
PAHs 1 ng=m3 0.33 (0.06, 0.60) 0.017
Model 3 (13%)
PM2:5 5 lg=m3 −0:71 (−1:26, −0:16) 0.012

Childhood exposure models (% of runs)
Model 1 (22.5%)
NOX 20 lg=m3 −0:14 (−0:23, −0:04) 0.007
Model 2 (10.5%)
NOX 20 lg=m3 −0:13 (−0:24, −0:03) 0.015
OPDTT 1 nmolDTT=min=m3 0.46 (−0:19, 1.11) 0.2
OC 1 lg=m3 −0:19 (−0:40, 0.01) 0.1

Global mean diffusivity
Pregnancy exposure models (% of runs)
Model 1 (13.5%)
Si 100 ng=m3 0.06 ( 0.01, 0.11) 0.018
OPDTT 1 nmolDTT=min=m3 0.05 (−0:02, 0.11) 0.2

Childhood exposure models (% of runs)
Model 1 (46.5%)
Zn 10 ng=m3 0.03 (0.01, 0.04) 0.005
OPDTT 1 nmolDTT=min=m3 0.07 (0.00, 0.14) 0.046
Model 2 (23%)
Zn 10 ng=m3 0.02 (0.01, 0.04) 0.008
OPDTT 1 nmolDTT=min=m3 0.06 (−0:01, 0.13) 0.1
Si 100 ng=m3 0.04 (−0:02, 0.09) 0.2

Note: Model selection was performed using Deletion/Substitution/Addition algorithm. PM10, B[a]P, K, and UFPs were excluded due to a correlation of 0.90 or more with PM2:5 ab-
sorbance, PAHs, Zn, and Cu respectively. For each combination of period of exposure and outcome, 200 runs were performed and the final model was selected based on frequency of
occurrence (percentage of runs, at least 10% to be reported here). Coefficients and 95% CI from (multiple) linear regression models adjusted for both maternal and paternal education,
country of birth, age, height, BMI, and psychological distress during pregnancy; maternal smoking and alcohol consumption during pregnancy, parity, marital status, intelligence quo-
tient, and household income; and child’s genetic ancestry, gender, and age at the scanning session. Any missing covariates were imputed through multiple imputation, and inverse
probability weighting technique was used to account for potential selection bias. B[a]P, benzo[a]pyrene; BMI, body mass index; CI, confidence intervals; coef., coefficient; Cu, copper;
K, potassium; NOX, nitrogen oxides; OC, organic carbon; OPDTT, oxidative potential of PM2:5 (DTT: evaluated using dithiothreitol); PAHs, polycyclic aromatic hydrocarbons; PM2:5,
particulate matter with diameter of <2:5 lm; Si, silicon; UFPs, ultrafine particles; Zn, zinc.
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for both pregnancy PM2:5 and pregnancy PAHs, with PAHs show-
ing a significant positive association with global FA in the multi-
pollutant model, whereas it showed no significant association in
the single-pollutant model. One possible explanation for these
unexpected results with PAHs could be that the mutually adjusted
estimates may have been affected by collinearity. However, the
two exposures were onlymoderately correlated (r=0:66).

Pregnancy exposure to Si was a significant predictor of global
MD in a multipollutant model that also included childhood Zn and
OPDTT. Pregnancy exposure to Si was also an FDR-significant pre-
dictor for MD in three white matter tracts based on single-pollutant
models, and the associations remained statistically significant when
we adjusted the models for childhood exposure to Zn. Si has not
been documented as a potential neurotoxicant to date. However, Si
may be a marker of exposure to resuspended road dust (Viana et al.
2008), and associations with Si may therefore reflect associations
with exposure to high traffic rather than exposure to Si specifically.

In analyses of exposures to air pollution during childhood, the
association between higher concentrations of NOX and lower
global FA remained significant in the multipollutant analysis. In
Europe, the predominant source of NOX gasses in the air is an
incomplete combustion of hydrocarbons originating mainly from
diesel fuel (Cyrys et al. 2003). Exposure to diesel exhaust has
been linked to numerous adverse health effects, such as increased
risk of neuroinflamation (Block et al. 2012). Results of the multi-
pollutant analysis also suggested a robust association between
higher childhood exposure to Zn, a marker for brake linings and
tire wear (Viana et al. 2008), and higher global MD. The associa-
tion between higher childhood exposure to Zn and higher global
MD was further supported by identification of six white matter
tracts, including association and callosal tracts and tracts of the
limbic system. These results are location-wise moderately in ac-
cordance with findings of our previous study wherein we found
an association between higher concentrations of air pollution dur-
ing pregnancy and thinner cerebral cortex in precuneus and ros-
tral middle frontal regions in children 6–10 years of age (Guxens
et al. 2018). Zn is a vital trace element for proper brain develop-
ment processes and brain functions later in life (Gower-Winter
and Levenson 2012); however, its accumulation in the brain can
cause excitotoxicity, oxidative stress, and impairment of the gen-
eration of cellular energy (Gower-Winter and Levenson 2012).
We also observed an association in single-pollutant, as well as
multipollutant models, between childhood exposure to a higher
oxidative potential of PM2:5, which is a measure to quantify the
potentiality of PM2:5 to induce oxidative stress, and higher global
MD. Oxidative stress together with inflammation and chronic
activation of the hypothalamic–pituitary–adrenal axis account for
the most likely mechanisms through which air pollutants can
cause damage to the brain (Block et al. 2012; Thomson 2013).

To our knowledge, there has been only one previous epidemio-
logical study of associations between air pollution andwhitematter
microstructure (Pujol et al. 2016b). In that study, that exposure to
higher concentrations of Cu at schools was associated with higher
FA in regions adjacent to the caudate nucleus in children 8–12
years of age. Similar to Zn, Cu reflects brake linings (Viana et al.
2008). In our study, we did not find a significant association
between pregnancy or childhood exposure to Cu and FA, and the
obtained nonsignificant associations were inverse, relating higher
exposure to Cu to lower FA. The discrepancies in the results
between the study of Pujol et al. (2016b) and our studymight be at-
tributable to differences in exposure assessment with respect to
location and timing (school levels at 8–10 years of age vs. residen-
tial levels during pregnancy and from birth until 9–12 years of
age), different Cu concentrations (8:7 ng=m3 vs. 4:7 ng=m3), or dif-
ferences in sample size (263 vs. 2,954 children).

Our study has a number of considerable strengths: a) a large
sample size for a population-based neuroimaging study in an urban
setting; b) the use of advanced statistical methods, including
inverse probabilityweighting to reduce possible selection and attri-
tion bias in the study; c) the adjustment for various socioeconomic
and lifestyle variables that are known to be potentially associated
with air pollution exposure and brain structure in children; d) a
standardized and validated air pollution assessment in two key de-
velopmental periods with insufficiently large measurement error to
bias the health effect estimates; and e) a large number of simultane-
ously assessed pollutants in an advanced multipollutant approach.
Correlations between the exposures during pregnancy and during
childhood were only moderate, allowing us to disentangle associa-
tions in these two periods.

There are also several limitations in our study. Sampling cam-
paigns were carried out when children were between 3.5 and 9 years
of age and historical pollution data the study areas was not available
for all the pollutants to extrapolate the concentrations to the specific
periods of interest. We therefore assumed that the concentrations of
the pollutants remained spatially stable over time based on previous
research supporting stability of spatial contrast in air pollution dem-
onstrated in the Netherlands for a period up to 8 y (1999–2007)
(Eeftens et al. 2011) and in Great Britain for a period up to 18 y
(1991–2009) (Gulliver et al. 2013). Another limitation of this study
is the high correlation between some of the pollutants. We used an
advanced variable selection technique that has demonstrated better
performance with reference to a compromise between sensitivity
and false discovery proportion compared with alternative methods
in settings comparable to ours (Agier et al. 2016). Nevertheless, we
still obtained an implausible result with pregnancy PAHs being
selected by the DSA algorithm and showing a significant positive
association with global FA when analyzed simultaneously with
pregnancy PM2:5 in a multipollutant model, whereas it showed no
significant association in the single-pollutant analysis. Furthermeth-
odological research is still needed to unequivocally identify specific
pollutants of a complex mixture, particularly if they are derived
from the same source. In addition, despite the careful and compre-
hensive selection of potential confounding variables, we cannot dis-
card the possibility of residual confounding of other variables that
we either did not consider or we considered but were unable to
include due to poor measurement or lack of measurement, such as a
perfect control for socioeconomic status. Residual confounding
could introduce bias and thereby lead to incorrect estimates of the
main associations (Weisskopf et al. 2018). In addition, several
potential confounding variables, as well as variables used to predict
participation in the study, had a high percentage of missing values.
We applied multiple imputation, followed by inverse probability
weighting to reduce possible selection and attrition bias in the study,
but it is possible that this might not have been sufficient to entirely
eliminate the bias due tomissing covariates aswell asmissing varia-
bles used to calculate the inverse probability weights. Finally, lower
FA and higher MD have generally been associated with impaired
neurodevelopment and have been related to psychiatric and neuro-
logical disorders such as autism spectrumdisorder and attention def-
icit hyperactivity disorder (Aoki et al. 2017; van Ewijk et al. 2012).
However, the brain is a highly complicated organ, which undergoes
many developmental processes, many of which take place simulta-
neously, and healthy progression of such processes can sometimes
have opposing characteristics (Di Martino et al. 2014). Therefore,
our results should be interpretedwith caution.

In summary, we found an association between higher expo-
sure to air pollutants representative of brake linings, tire wear,
and tailpipe emissions originating mainly from diesel combustion
with lower FA and higher MD of white matter in preadolescents.
The observed associations involved exposure to air pollution
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during both key developmental periods, namely, pregnancy and
childhood, demonstrating the importance of examination of both
periods in future studies. All pollutants showing associations
have traffic as their main source and are, therefore, highly ubiqui-
tous in urban settings, putting a very large portion of children at
risk. Based on our results, the current direction toward innovative
solutions for cleaner energy vehicles are strongly supported by
the authors. However, these measures might not be completely
adequate to mitigate health problems attributable to traffic-related
air pollution given that we also observed associations with ele-
mental zinc, which is a marker for brake linings and tire wear.
Further studies are warranted to confirm these results.
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